
Optimal Behavioral Matching

Natalia Lazzati∗

March 20, 2024

Abstract

The paper studies effi cient matchings in the context in which payoffs depend on the

actions of the group members, instead of on their characteristics. To describe the payoff

maximizing matching we re-express the model in terms of behavioral types and introduce

the idea of behavioral matching. The analysis relies on an association order that has just

been recently used in economics, namely, the increasing and supermodular order. As a

by-product of the effi cient characterization, we show that positive assortative matching

is payoff maximizing in the case of increasing and supermodular payoffs if (and only if)

the group members coordinate in the maximum equilibrium.
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1 Introduction

The classical theory of assortative matching shows that when payoffs display complementar-

ities in some characteristic of people then positive assortative matching often emerges as an

effi cient outcome. To fix ideas, let us consider a classroom that has Girls and Boys. The stu-

dents are either high- or low-ability levels. The teacher wants to assign students to groups of

two (one Girl and one Boy) to work in a specific project. If the quality of the project displays

complementarities in ability levels, then the aggregate quality of projects across all pairs of

students is often maximized when the groups are formed with students of the same ability

level. This is referred in the economic literature as positive assortative matching. This paper

was started by the recognition that (quite often) the payoffs of the matchings depend on the

actions of people instead of on their characteristics. In this alternative set-up we describe the

set of effi cient matchings and study whether they are assortative.

Let us consider again the example of the classroom. In this application one argue that the

quality of the project depends on the effort level exerted by the students in each group. In

this case, the ability might be just a determinant of the effort that the student selects. The

effort level of the student might also depend on the effort selected by the other member of

the group. The distinctive element in our set-up is that while the characteristics of people

are exogenous to the model and not affected by the matching, the actions of the group

members endogenously emerge as the outcome of a game. Moreover, the induced game might

have multiple equilibria. Thus, to characterize the payoff maximizing matchings we need to

accommodate endogeneity of choices and multiplicity of equilibria.

Specifically, we consider a population composed of two groups of people. The principal

forms pairs of people with one member of each group. Each pair of people plays a binary game

of strategic complements. We capture complementarities by assuming that payoffs display

the single-crossing property between own action and the action of the other group member.

In the case of the classroom, this implies that the effort level of one of the group members

increases with the effort level selected by the other one. The choices in each pair of people
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emerge as a Nash equilibrium of the induced game. The principal cares about the choices

of each pair via a payoff function. The initial aim of the paper is to characterize the set

of matchings that maximize aggregate payoffs for payoff functions that are increasing and

supermodular.

To achieve this goal, we first map the distribution of preferences (or utility functions) of

people in each group into a distribution of implied behavior. We describe a behavioral type

in terms of the action that a given person would choose as a function of the action selected by

the other group member. The assumption of utility maximization means that each possible

behavioral type corresponds to a best-reply function. Under the single-crossing property, the

set of consistent behavioral types reduces to the set of best-replies that are increasing. We

then notice that each pair in the population can be thought of as a pair of behavioral types.

This approach allows us to define a behavioral matching as a bivariate distribution on the

set of behavioral types. To each pair of behavioral types corresponds an equilibrium set. For

the pairs that generate multiple equilibria, we assume that there is an arbitrary equilibrium

selection rule. Altogether, each behavioral matching generates a distribution of choices that

can be used to construct the aggregate payoffs for the principal. Under this behavioral set-up,

we take advantage of the increasing and supermodular stochastic order to characterize the

set of behavioral matchings that maximize the aggregate payoffs.

As a by-product, the conditions we impose in preferences induce a natural order on the set

of behavioral types. This allows us to explore whether positive assortative matching is payoff

maximizing in our model. We find that the answer is yes if, and only if, people coordinate

on the highest equilibrium. For any other equilibrium selection rule, the payoff maximizing

matching avoids forming pairs that generate multiple equilibria.

We now connect our work with the existing literature. The concept of positive assortative

matching was introduced by Becker (1973, 1974) in his extremely influential work on the

marriage market. There is a vast literature in economics following up on this idea. As we

just described, we study a similar matching problem but for the case in which payoffs depend
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on actions (not on characteristics). Durlauf and Seshadri (2003) consider the possibility that

choices enter payoffs but do not formally deal with multiplicity of equilibria. The idea of

defining behavioral types in terms of best-replies has been used by Lazzati, Quah, and Shirai

(2021) to test Nash equilibrium behavior in supermodular games. We extend the approach

to groups and introduce the idea of behavioral matching. The paper relies on the increasing

and supermodular stochastic order. The supermodular stochastic order has been recently

used in economics (for very different purposes) by Amir and Lazzati (2016), Athey and Levin

(2001), and Levin (2001), among others. Dziewulski and Quah (2014) use the increasing and

supermodular order to derive a revealed preference test for production with complementar-

ities, and Lazzati (2020) uses this order to study the co-diffusion process of complementary

technologies. Meyer and Strulovici (2012, 2015) provide a useful characterization of these

association orders coupled with many interesting applications to economics.

The rest of the paper is organized as follows. Section 2 presents the model and the objective

of our analysis. Section 3 introduces the concept of behavioral matching and characterizes

the one that maximizes aggregate payoffs. Section 4 assumes the principal observes the

distribution of choices for some initial matching. This section shows that the principal can

use the observed choices to learn the type of each person in the population via a simple

re-matching. This information could be used to implement the effi cient matching. Section 5

concludes. The proofs are collected in Section 6.

2 The Model

The population is composed of two groups of people, G1 and G2. For example, G1 might

be girls and G2 might be boys. The principal wants to arrange the population into pairs of

people with one member of each group in each pair. We will refer to Player 1 as a person

from Group 1 and Player 2 as a person from Group 2. We assume the two groups have the

same size. That is, |G1| = |G2| .
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Each pair of people plays a binary game. The action space of each player is {0, 1}. For

example, 0 might be low effort in a group project and 1 might indicate high effort. There is a

distribution of preferences in each group, allowing for arbitrary heterogeneity across people.

Each pair of people is associated to a realization of the random utilities described as follows

U1(x1, x2) : {0, 1} × {0, 1} → R and U2(x2, x1) : {0, 1} × {0, 1} → R

where x1 and x2 are the actions selected by Players 1 and 2, respectively. Let P1 and P2

be the distributions of preferences in Groups 1 and 2, respectively. Each pair of marginals

induces a set of joint distributions P12. Consistency requires∫
P12dP2 = P1 and

∫
P12dP1 = P2.

The distribution of preferences might differ in the two groups. We are interested in distribu-

tions of preferences with support on utility functions that have unique maximizers and satisfy

the single-crossing property.

Definition (Single-Crossing Property) Ug(xg, x−g) has the single-crossing property in xg

and x−g if, for g = 1, 2,

Ug(1, 0)−Ug(0, 0) ≥ (>) 0 =⇒ Ug(1, 1)−Ug(0, 1) ≥ (>) 0.

Along the analysis will use a simple example to illustrate our ideas.

Example: Let us define Ug(xg, x−g) as the realization of a random payoff

Ug(1, 0, a) = (a− 50)xg + 10xgx−g for g = 1, 2

where a is uniformly distributed in the interval [0, 100] . For instance, if the actions of the

players indicate effort levels, then a might reflect the ability of the person. It can be easily

checked that this utility function has the single-crossing property in xg and x−g. �

As we initially stated, each pair of people plays a binary game. We use Nash equilibrium

in pure strategies as our solution concept. It is well-known that when the utilities satisfy
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the single-crossing property, then the equilibrium set is non-empty (see, e.g., Milgrom and

Shannon (1994)). It has also been established that multiple equilibria cannot be ruled out

in this class of games. Let NE(U1,U2) ⊆ {0, 1} × {0, 1} be the equilibrium set induced

by U1,U2. Let λ (· | U1,U2) be an equilibrium selection rule, where λ (x1, x2 | U1,U2) is the

fraction of groups with preferences U1,U2 that select the pair of choices x1, x2. We assume

λ (x1, x2 | U1,U2) = 0 for x1, x2 /∈ NE(U1,U2) and
∑

x1,x2∈{0,1}×{0,1} λ (x1, x2 | U1,U2) = 1.

The principal cares about the choices of each pair of people via a payoff function π :

{0, 1} × {0, 1} → R. The aggregate payoff for the principal is given by∫ ∑
x1,x2∈{0,1}×{0,1}

π (x1, x2)λ (x1, x2 | U1,U2) dP12.

We want to characterize the set of joint distributions P12 that maximize the aggregate payoffs

for each pair of marginals (P1 and P2) and certain types of payoff functions. Specifically, we

are interested in payoffs that are increasing and supermodular.

Definition (Properties of the Payoff Function) The payoff function π is increasing if

π (1, 1) ≥ π (0, 1) ‖ π (1, 0) ≥ π (0, 0) .

It is supermodular if

π (1, 1) + π (0, 0) ≥ π (0, 1) + π (1, 0) .

In the case of increasing payoffs, the principal prefers high over low actions. Supermodular

payoffs capture the idea of complementarities. These two properties are quite natural in many

applications we are interested in. Supermodularity also plays a key role in the equilibrium

and effi ciency proofs of assortative matching in various models.

Example: Let us consider the following payoff function for the principal

π (x1, x2) = 1 (x1 = 1) + 1 (x2 = 1) + 1 (x1 = 1) 1 (x2 = 1)

where 1 (·) is the standard indicator function. Note that π is increasing and supermodular.
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3 Optimal Behavioral Matching

In this section, we characterize the distributions of groups that maximize aggregate payoffs

for payoff functions that are increasing and supermodular. Since the principal cares about

the actions selected by each pair of people, it is convenient to express the model in terms of

behavioral types. The notion of behavioral types will allow us to think about a distribution

of groups as a behavioral matching. We start by re-writing the model in this way, and then

characterize the optimal behavioral matching.

3.1 Behavioral Matching

A behavioral type describes the action that a person would choose as a function of the

action selected by the other player. According to this definition, each person might belong to

one of four possible behavioral types.

Other Player Action Behavioral Type

0 1

0 0 Type 1 (T1)

0 1 Type 2 (T2)

1 1 Type 3 (T3)

1 0 Type 4 (T4)

.

For instance, a Type 2 player (T2) selects action 0 if the other player selects action 0 and

action 1 if the other player selects 1. The other three types can be similarly interpreted. Let

us indicate by Q1 =
(
Q11,Q

1
2,Q

1
3,Q

1
4

)
and Q2 =

(
Q21,Q

2
2,Q

2
3,Q

2
4

)
the distributions of types in

Groups 1 and 2, respectively. Naturally, for g = 1, 2, we have that

Qg1,Q
g
2,Q

g
3,Q

g
4 ≥ 0 and Qg1 +Qg2 +Qg3 +Qg4 = 1.

When players are utility-maximizers and their maximizers are singletons, then each be-

havioral type corresponds to a best-reply function. In this case, the random utilities can
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be decomposed into the four behavioral types we just described. If, in addition, the utility

functions satisfy the single-crossing property, then the best-replies are increasing. In terms

of behavioral types, this means that Qg4 = 0 for g = 1, 2. That is, only players of Types 1, 2,

and 3 are consistent with the hypothesis of maximizing single-valued utilities that have the

single-crossing property. Altogether, each marginal distribution Pg induces a distribution of

behavioral types, for g = 1, 2,

Qg1 = EPg [1 (Ug (0, 0) > Ug (1, 0) ∧Ug (0, 1) > Ug (1, 1))]

Qg2 = EPg [1 (Ug (0, 0) > Ug (1, 0) ∧Ug (1, 1) > Ug (0, 1))]

Qg3 = EPg [1 (Ug (1, 0) > Ug (0, 0) ∧Ug (1, 1) > Ug (0, 1))]

.

We take the distributions of behavioral types as given.

Example: Recall that, for each group, the utility function is

Ug(1, 0, a) = (a− 50)xg + 10xgx−g

with a being uniformly distributed in [0, 100]. It follows that

Qg1 = 40/100, Qg2 = 10/100 and Qg3 = 50/100 for g = 1, 2.

Note that Q14 = Q24 = 0. Since the utilities satisfy the single-crossing condition, this is

consistent with our previous statement. �

We stated earlier that each pair of people plays a binary game and we use Nash equilibrium

in pure strategies as our solution concept. Thus, we can associate each pair of possible types

with an equilibrium set. The next table captures this idea.

Pair of Behavioral Types Equilibrium Set

T1T1,T1T2,T2T1 0, 0

T1T3 0, 1

T3T1 1, 0

T2T3,T3T2,T3T3 1, 1

T2T2 0, 0 and 1, 1

.
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Multiple equilibria occur when a pair is formed with two people of Type 2. In this case, we

assume 1, 1 is selected with probability α, and 0, 0 is chosen with probability 1− α.

Let M = (Mst)s,t=1,2,3 be a distribution of pairs of people, where Mst is the fraction of pairs

with a Type s person as Player 1 and a Type t person as Player 2. We will refer to each M

as a behavioral matching. The distribution of behavioral types imposes some restrictions

on M. Specifically,∑
t=1,2,3

Mst = Q1s for s = 1, 2, 3 and
∑

s=1,2,3
Mst = Q2t for t = 1, 2, 3.

We indicate byM the set of all possible behavioral matchings.

Each behavioral matching M induces a distribution of equilibrium choices P(· | M, α)

P (0, 0 | M, α) = M11 +M12 +M21 + (1− α)M22

P (0, 1 | M, α) = M13

P (1, 0 | M, α) = M31

P (1, 1 | M, α) = αM22 +M23 +M32 +M33

.

In terms of the initial model, we have that

P (x1, x2 | M, α) = EP12 [λ (x1, x2 | U1,U2)] for each x1, x2 ∈ {0, 1} × {0, 1} .

Recall that the principal cares about the choices of each pair of people via a payoff function

π : {0, 1}2 → R. The aggregate payoff for the principal can be re-written as follows

Π (M, α) = π (0, 0)P (0, 0 | M, α)+π (0, 1)P (0, 1 | M, α)+π (1, 0)P (1, 0 | M, α)+π (1, 1)P (1, 1 | M, α) .

Under this specification, we want to characterize the set of behavioral matchings that maxi-

mize the total payoff

maxM {Π (M, α) : M ∈M and α ∈ [0, 1]}

for payoff functions π that are increasing and supermodular (ISPM). We will refer to this

sub-set asMISPM.

Let us use our example again to illustrate the new concepts.
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Example: The payoff function for the principal is

π (x1, x2) = 1 (x1 = 1) + 1 (x2 = 1) + 1 (x1 = 1) 1 (x2 = 1) .

We obtained earlier that

Qg1 = 40/100, Qg2 = 10/100 and Qg3 = 50/100 for g = 1, 2.

Thus, for each behavioral matching M, we have that

Π (M, α) = M13 +M31 + 3 (αM22 +M23 +M32 +M33) .

The purpose of the principal is to solve the next problem

maxM {Π (M, α) = M13 +M31 + 3 (αM22 +M23 +M32 +M33) : M ∈M} .

In this case, any M ∈M satisfies∑
t
M1t =

∑
s
Ms1 =

10

100
,
∑

t
M2t =

∑
s
Ms2 =

40

100
, and

∑
t
M3t =

∑
s
Ms3 =

50

100
.

This set includes all possible behavioral matchings that can be attained with the given dis-

tribution of behavioral types in each group. �

3.2 PayoffMaximizing Behavioral Matchings

This section characterizes the sub-set of behavioral matchings MISPM ⊆ M that maximize

aggregate payoffs Π (M, α) for any increasing and supermodular payoff function π.

Let us formally say that M ∈ MISPM if, for any increasing and supermodular payoff

function π, we have that

Π (M, α) ≥ Π (M′, α) for all M′ ∈ M\MISPM and all α ∈ [0, 1] .

Recall that the aggregate payoff for the principal can be written as follows

Π (M, α) = π (0, 0)P (0, 0 | M, α)+π (0, 1)P (0, 1 | M, α)+π (1, 0)P (1, 0 | M, α)+π (1, 1)P (1, 1 | M, α) .
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Notice that Π can be described as the expected value of π with respect to the distribution

of choices induced by the behavioral matching M. The characterization of MISPM relies on

the increasing and supermodular stochastic (ISPM) order. We define this order next, and

subsequently establish its relevance in our problem.

Definition (ISPM Order) Let M,M′ ∈ M. We say P(· | M, α) ≥ISPM P(· | M′, α) if

P (1, 0 | M′, α) + P (1, 1 | M′, α) ≥ P (1, 0 | M, α) + P (1, 1 | M, α)

P (0, 1 | M′, α) + P (1, 1 | M′, α) ≥ P (0, 1 | M, α) + P (1, 1 | M, α)

P (1, 1 | M′, α) ≥ P (1, 1 | M, α) .

In the case of bivariate Bernoulli distributions, the ISPM stochastic order coincides with

the upper orthant order. (This equivalence has been established by Scarsini (1998).) Ac-

cording to the previous definition, a probability distribution is larger than another one if it

has higher probabilities for all upper orthant sets. In our model, this is the same as to say

that the larger distribution has a higher proportion of Players 1 selecting action 1, Players 2

selecting action 1, and pairs of Players 1 and 2 selecting the pair of actions 1, 1.

The next result shows that this order can be used to compare the expected payoffs of

functions that are increasing and supermodular.

Theorem (ISPM Order) Π (M, α) ≥ Π (M′, α) for any increasing and supermodular π if,

and only if,

P (· | M, α) ≥ISPM P (· | M′, α) .

We finally apply these results to characterize the optimal behavioral matching.

Proposition 1 MISPM is characterized by

M11 = min
{
Q11,Q

2
1

}
, M23 = min

{
Q12,Q

2
3

}
, and M32 = min

{
Q13,Q

2
2

}
.

Moreover, it is a singleton.
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Let us make a few remarks about the last result. First, notice that the purpose of the max-

imization problem was to find the set of all behavioral matchings that are payoffmaximizing

for any increasing and supermodular profit function. The fact that the optimal behavioral

matching is unique is a strong result. Second, let us say that a best-reply function is larger

than another one if the person is more willing to select action 1. This idea allows us to rank

the behavioral types as follows

T1 < T2 < T3.

Using this order, it is readily verified that the optimal matching is not assortative. That is, it

does not pair people in an increasing way. Indeed, the matching avoids forming pairs of types

T2T2. Recall that this pair of behavioral types select actions 0, 0 with probability 1− α and

actions 1, 1 with probability α. Instead, the optimal matching pairs Type 2 people with people

of Type 3. In doing so, the matching induces actions 1, 1 with probability 1. That is, the

optimal matching pairs types to shift actions up in the area of multiple equilibria.

Example: In our initial example, the optimal behavioral matching is given by

M11 = 40/100, M23 = M32 = 10/100, and M33 = 40/100.

Under this matching the aggregate payoff of the principal is

Π (M, α) = 180/100.

Notice that this behavioral matching generates the same average payoff irrespective of the

equilibrium selection rule α. �

We finally show that assortative matching is payoff maximizing if (and only if) players

coordinate in the highest equilibrium, i.e. α = 1.

Proposition 2 Let us define the assortative matchingMA as follows

M11 = Qg1, M22 = Qg2 and M33 = Qg3 for g = 1, 2.

Assume the distribution of types coincides in the two groups and α = 1. Then,MA ∈MISPM .
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Example: In our simple example, the assortative matching is given by

M11 = 40/100, M22 = 10/100, and M33 = 50/100.

Under this matching the aggregate payoff of the principal is

Π (M, α) = 3 (α10/100 + 50/100) .

This payoff is lower than the one that corresponds to the optimal behavioral matching,

180/100, for any α < 1. The two payoffs coincide when α = 1. �

4 Identification of Types

In the previous section we characterized the optimal behavioral matching. Let us now assume

that the principal observes the choices for all pairs of people in the population and would like

to infer the types of the players. This exercise is useful if the principal has the possibility of

re-matching to increase the aggregate payoffs.

Notice that, without any extra assumption, the principal can recover the types for pairs

that selected either (0, 1) or (1, 0). This follows from the fact that

P(0, 1 | M, α) = M13

P (1, 0 | M, α) = M31

.

The other two pairs of choices can be generated by different pairs of behavioral types and

their frequency also depends on the equilibrium selection rule. Specifically, we have that

P (0, 0 | M, α) = M11 +M12 +M21 + (1− α)M22

P (1, 1 | M, α) = αM22 +M23 +M32 +M33

.

It follows that, without assuming any equilibrium selection rule, we can just partially identify
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pairs of types from the observed choices. The next table summarizes the information we have.

Observed Choices Partially Identified Set of Pairs of Behavioral Types

0, 0 T1T1,T1T2,T2T1,T2T2

0, 1 T1T3

1, 0 T3T1

1, 1 T2T3,T3T2,T3T3,T2T2

.

But notice that if P(0, 1 | M, α) and P(1, 0 | M, α) are different from 0, the principal can

eventually learn all types via re-matching. Specifically, the principal can use the T1 and T3

players as instruments to recover the type of the other players in each group.

To illustrate the previous claim, take a Player 2 that selected action 1 in a pair that

selected (0, 1). We know that this Player 2 is T3. Then take Player 1 in a pair that selected

(0, 0) . Match these two players. If Player 1 selects 0, then the person is T1; if Player 1 selects

1, then the person is T2. Similarly, take a Player 2 that selected 0 in a pair that selected

(1, 0). We know this Player 2 is T1. Then take Player 1 in a pair that selected (1, 1). Match

these two players. If Player 1 selects 1, then the person is T3; if the Player 1 selects 0, then

the person is T2. This procedure would allow the principal to learn the types of Group 1. A

similar idea can be used to learn the types of Group 2.

5 Final Remarks

The paper studied optimal matching in a context in which payoffs depend on the actions of

the group members, as compared to their characteristics. To describe the optimal matching

we re-expressed the model in terms of behavioral types and introduced the idea of behavioral

matching. As a by-product of the analysis, we showed that positive assortative matching is

optimal in the case of increasing and supermodular payoffs if (and only if) players coordi-

nate on the maximum equilibrium. The analysis relied on the increasing and supermodular

stochastic order which have been recently used in other applications in economics.
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We finally considered a situation in which the principal observes choices and is inter-

esting in recovering types. This information would be relevant if he had the possibility of

re-matching. We showed that while the distribution of types is just set identified from the

observed choices, via a simple re-matching of players across groups, the principal could recover

the types of the different players.
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6 Proofs

Proof of Proposition 1. Notice that

P (1, 0 | M) + P (1, 1 | M) = Q13 + αM22 +M23

P (0, 1 | M) + P (1, 1 | M) = Q23 + αM22 +M32

P (1, 1 | M) = αM22 +M23 +M32 +M33

Let M be such that M11 < min
{
Q11,Q

2
1

}
. Thus, there are at least two pairs in M that belong

to one of the next four categories

T1T2 and T2T1 T1T2 and T3T1 T1T3 and T2T1 T1T3 and T3T1 .

Construct M′ by making one of the next rearrangements

T1T1 and T2T2 T1T1 and T3T2 T1T1 and T2T3 T1T1 and T3T3 .

Note that, P(· | M′) ≥ISPM P(· | M) . Since, M11 > min
{
Q11,Q

2
1

}
is not possible, M ∈MISPM

if and only if M11 = min
{
Q11,Q

2
1

}
.

Let M be such that M23 < min
{
Q12,Q

2
3

}
. Thus, there are at least two pairs in M that

belong to one of the next categories

T2T1 and T1T3 T2T1 and T3T3 T2T2 and T1T3 T2T2 and T3T3 .

Construct M′ by making one of the next rearrangements

T1T1 and T2T3 T3T1 and T2T3 T1T2 and T2T3 T2T3 and T3T2 .

Note that, P(· | M′) ≥ISPM P(· | M) . Since, M23 < min
{
Q12,Q

2
3

}
is not possible, M ∈MISPM

if and only if M23 = min
{
Q12,Q

2
3

}
.

The proof that M ∈MISPM if and only if M32 = min
{
Q13,Q

2
2

}
follows the same idea. �
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Proof of Proposition 2. From Proposition 1 we know that if the distribution of types

coincides in the two group, then

M11 = Q11 = Q21, M23 = min
{
Q12,Q

2
3

}
, and M32 = min

{
Q13,Q

2
2

}
is payoffmaximizer. Notice that, if α = 1, then T2T3, T3T2 and T3T3 generate the same pair

of choices 1, 1. Thus,

M11 = Q11 = Q21, M23 = Q12 = Q22, and M32 = Q13 = Q23

generates the same distribution of choices than the initial matching and it is thereby payoff

equivalent. �
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